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Two-time correlation functions of a harmonic system nonbilinearly coupled to a heat bath:
Spontaneous Raman spectroscopy
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A harmonic system coupled to a heat bath comprised of harmonic oscillators through a nonbilinear system-
bath interactiorqij is considered, wherg andq; are the system and bath coordinates, respectively. The
two-time correlation functions for the model are analytically obtained through a diagrammatic expansion.
Numerical calculations of the analytical results are presented for the spontafresugncy-domainRaman
spectroscopy. Comparison with numerical results from the conventional linear-coupling (th@dBrownian
oscillator model are made, which indicates experimentally distinguishable temperature dependences.
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PACS numbsgs): 05.70—a, 31.15-p, 33.20.Fb

In the Brownian oscillator modg¢lL—3|, the harmonic os- model, the frequency of the mode of the system itself is
cillator system is coupled to the heat bath consisting of aimodulated by the environment as in the stochastic model,
infinite number of harmonic oscillators. The coupling be-while its classical dynamics can be described by the
tween the main system and the bath is assumed to be bilin-angevin-type equation as in the LL model. Thus the SL
ear, i.e.qq; . The Gaussian property is guaranteed for a batfnodel makes it possible to bridge the gap between the sto-
consisting of harmonic oscillators bilinearly coupled to thechastic model and the dynamical moddach as LL modg!
main system. Although a number of experiments have beeyhich are based on the Langevin-type equation derived from
well explained by the Brownian model, one needs to modifythe Hamiltonian. B
the model to have a better description of realistic systems, AS the main tool, we use the Feynman rule on the unified-

Generalization to, for example, an anharmonic bath or nontMme path(UTP) [4-6]. To derive the real-time correlation

bilinear coupling breaks the Gaussian nature of the nois{eggﬁtr:?qnu:;_atgz'taégggg:gtu;ﬁa trlleerlzyirhe ftc\;\:cr)n;\llieslgksnoxyr?e
produced by the Brownian bath. former requires subtle analytical continuation, which is only
ith i linéthe SL modal denoted bva? rTépplicable to the correlation function of two-time variables,
With square-inear coup inghe - mo o enotea byq-g; while the latter makes it hard to include the initial correla-
in terms of the two-time correlation function. Although the i, The advantage of the UTP formalism is that a multi-
conventional linear-linear couplinghe LL mode) causes (realdtime real-time correlation function such as
dissipation in the system dynamics, it does not modulate th?q(t)q(t’)- ..q(t")) can be obtainedwithout performing
fundamental frequency, of the main harmonic system. If the delicate analytical continuation butth the initial corre-
we assume the square-linear interaction, howewsgrwill lation automatically taken into account.

fluctuate asvo+()(t), where()(t) is the noise produced by  Consider models described by the Hamiltonian

the bath. By use of the terminology of the reduced density

matrix, the difference of the two models is that in the SL

model the pure dephasing is the mechanism of dissipation, P2 Mow? Nl p? mo? F.(q) 2
which is not included in the LL model. H= et 2+2 2—J % i~ J ARE
The deviation from the Brownian system can be directly Mo =1 (M m;j wj

detected by optical measurements such as impulsive stimu- @
lated scatteringlSS), optical Kerr effec{ OKE), and infrared
absorption(IR), which are related to the antisymmetric time ] )
correlation functior([q(t),q(0)]) [3]. In this article, we cal- Wherep,q are the momentum and coordinate of the main
culate the correlation functions for the LL and the SL model, Systém and; ,q; are those of thgth degree of freedom of
and then show how one can use the off-resonant Ramafe bath oscnlato-rs. In the linear-linear couplmg.mo(ﬂab
spectroscopy to distinguish the two models. LL model), F;(q) is chosen to b&;(q) =c; g. In this study,
Besides the above-mentioned interests, the SL model i€ introduce the square-linear modghe SL model in
important in that it connects the stochastic model to thevhich Fj(q)=g; g?/2. Note here that, in the LL model, the
Brownian (or the LL) model. The stochastic model is based Hamiltonian has the coupling termq;, while, in the SL
on the assumption that the environment causes a randofodel, it has the coupling term?q;. In addition, the SL
modulation of the vibrational frequency, whereas the Brown-model has the anharmonic contributing*/4! to the poten-
ian model is based on the assumption that the environmefi@l, while the LL model has the frequency shifting tefthe
causes the friction of motion by way of the random forcecounter term Aq%2 [2,1], where A=3;(3g7/m;w?),
[see the fluctuation dissipation relation in E&) below, A=2j(cj2/ mjwjz). To elucidate the physical picture associ-
which is described by the Langevin equation. In the SlLated with these models, we present the Euler-Lagrange equa-
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tion derived from the Hamiltonial). We found that, for

anyF;(q), the equation of motion reduces to the generalized DU (z)=—= E (2)—f(vp)], (8
Langevin equation: Bn—fw vy Z
d’q dv ft dq (-3) _
My— + ——+mg | dt’y(t—t")— =R(t), 2 D¢ “(zn)=—-% —f(v)], €)
o g2 Tdg M), ¥( )dt’ (t) 2
where the damping kernel is given by DE(n)=f(vy), (10
JF;(a(t)) cosw;(t—t") aF;(q(t’)) wherev,=2mn/(B%). To obtain the functiorf(x), we de-

rive Df;”(z) through perturbative calculations. The dia-
grammatic expansion d{ *)(z) is then calculated by us-

It should be noticed that the ter&q?/2 in the LL model and ing the Feynman rule &S]
the termrg?/4! in the SL model have been eliminated from

rt-t)= J2 aq(t) Mem; ! aq(t")

1

the equation of motion after tracing over the bath degrees of DL H)(z)= , (12)
freedom: the potential in the above equation is given by ¢ [DCY(2)] 1-2(2)
V(q)=m0w§q2/2. R(t) is the fluctuating force which satis-
fies the relations where
R(t)),=0, 4 A1l 1
(R(D), (@) o=t L 1
! ! +
(RIOR())=y(t—t )mg/B, 5 0 wptz

where the expectation is the classical phase-space average!n the LL model, the self-energli(2) is exactly given by
with the initial distributione™#" at the inverse temperature = (2= — 7., [5]. In the SL model the self-energy(2) is
B=1/kgT. In the SL model the damping kernel is a function c@lculated up to the second ordergpas

of the coordinatey(t—t")=q(t) s (t—t')q(t"), while in N

the LL model it does not depend ong: S(2)=3.+ > 2j+f dt e[S +3i(01],
y(t—t')= 5 (t—1"). In the following, we study a quantum j=1

dynamics of the system in the case gf, (t)= 7, 5(t) or 13

nsL(t) = ng ().

In the Feynman rule on UTF5,6], we use four indepen- Where the sum/=3}(t)+3L(t) is time independent

dent propagators, though each elementj(t) or S¢(t) depends on time. Each
term can be described by a diagram and analytical expres-
D H(t,t")=—6(t—t")(q(0)q(t)—a(t)q(0))o, sions for such diagrams are given by
)= o __ ' \po
D (tt )=§<Q(0)Q(t)+Q(t)Q(0)>o. Ea—_ng (0,0,

D3(t,7)=(q(0)q(t+i7))o,
D®I(7,7)=0(7— 7' )a(iv)q(i1))o
+0(r"—7){q(inq(i7"))o,

where the expectation value is defined by the noninteracting
HamiltonianH, as

) Bh
2h()= ﬁzgzD“f” (0,0 fo drD{~%\(t,7),

2‘(t)——gJD<“)(O 0)f dt’'D{~ (t,t"),

(q(0)q(t))o=Tre PHogqeHotiqe Hol'a/TreAHo, (6) Sht=- ZQZD( (10D 7(t,0),

The correlation functions for the interacting system,
D™  are given by replacing the noninteracting Hamiltonian
by the full Hamiltonian in the definitions of the bare corre-
lation  functions, DU™. For example, D¢ (t,7)
=(q(0)q(t+i7)), where the expectation value is defined by Introducing the spectral density defined by
Eq. (6) with H, replaced byH. N

We found that, in the Fourier-Laplace representation, all Iw)= E
the full correlation functions can be expressed through a =
single functionf(x) of a complex variable:

. 1
Eg(t):—ﬁng<‘+>(t,0>D}“>(t,0>.

2

5(w w;), (14

the summation ovey in Eq. (13) is replaced by the integral.
If we assumel(w)=myng w, Which is equivalent to setting

h
(=) ()= _
De "(2) i f2), @ nsL(t) =mgns 8(1), this integration is divergent. To regular-
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ize the divergent integral, we introduce a convergent factor

(A) The SL model (B) The LL model

e'* wheree is a positive small number and shall be set to 18 18
zero at the end. To eliminate the divergence we replace the }3 }3
frequencywg in the Hamiltonian Eq(1) by wg+ A wg where . }(2) 5 1%
Aw§=(2ﬁ ns !/ m)In(1—e""1%). After this renormalization, S = 8
we have & :
2 2
0 : A 0+
~ hye 2-15-1-050051 152 2-15-1-050 05 1 1.5 2
2r(2)=i ——[S1(2)+SR(2)], (15) ® ®
FIG. 1. The temperature dependence of Raman line shape for
where (A) the SL model with75 =0.3 and(B) the LL model with
_ _ . 7..=0.3. The intensityl (w) in the figure and the other variables
s 1z tf‘Bh o N 1Z— wy tf‘lz_ wy 5 are dimensionless as defined below E29). The solid line from the
1(2)= wo coth— 2w, coth— B lowest to the highest one arouns=0 corresponds to the inverse
, i temperaturesa) 5=3.0, (b) B=1.0, (c) B=0.5, and(d) B=0.2,
_1z+ o COthIZ+ @Wo gt (16) respectively. If we sebo=210 cm %, the temperatures ata) 100
2wg 2 ' K, (b) 300 K, (c) 600 K, (d) 1500 K.
and i 1 1 &, hf(iw)
I(w)=R Ehf(lw)+ﬂ_ﬁh0+ﬁ_ﬁ 2 hn_ ” ,
4 o VA(322— wd) — (wd+7%)? T "
SR(Z) :_ﬁ . 2 2 . 2 2" (21)
Bh =1 Vn{(wO'HZ) +Vn}{((1)0—IZ) +Vn} . . . .
17 whereX’ implies that the summation does not inclutge 0.
In the following, numerical calculations are carried out using
From Egs.(7) and(11) we finally obtain Eq. (21) for both models.
In the high temperature limig— 0, Eqg.(21) reduces to
1 ~
f(x)= : (18) 1 7eif

Mo} (w3+ x2)/w3—§R(x)

wheregR(X) is defined through Eqg15—(17). Combined

with Egs. (7)—(10), we now have analytical expressions for have used

(22

Tz =t
) T o0t (amm?

where 7= 7L (= 75,/ B) in the LL (SL) model. Here we
the dimensionless parameters defined as

all theD{™ within the present approximation since the func-T ()= Mol ()17, 7= ] w0, ms=Fi 7e/(Mow?), B

tion f(x) is given by Eq.(18). In the case of the LL model,
f(x) is expressed in EQq(18) by replacing 2g(x) by
- 77|_|_X/(1)(2).

=,8ﬁwo,:u=w/wo,’(:)0=w0/wo=l.
Figure 1 compares the Raman spectra for various tem-
peratures in the cases &) the SL model andB) the LL

Within the linear approximation of the polarizability model. We chose the system-bath coupling ,7< =0.3,
(a=ag+ a,0), the(off-resonant spontaneous Raman signal \hich satisfies the perturbative conditiop, ,7¢ <1. At

is given by[3]

l(w)=2ajRe| dt(q(0)q(t))e'™", (19
0
wherew is the Raman shift. We thus have
1 S
— ivy0
[(w) Re{_ﬁth e hnl, (20

where h,=D{ ®(iw,n). Here D{ *(iw,n) is defined by
Eqg. (9) in which f(x) is now given by Eq(18) for the SL
model. The results for the LL model can also be obtained

replacinggR(x) in Eq. (18) by — , x. Here, 0" is an in-

low temperature the Stokesw(-—1) and anti-Stokes

(w~1) lines are observed in both models. Since we assumed
the linear polarization,a=ay+ @1q, the scattered light
originated from the transition between thité and the = 1th
vibrational states. At low temperatures, the Stokes line
mainly corresponds to the transition from the ground vibra-
tional state|0) to the first excited statél) while the anti-
Stokes corresponds to the opposite proddss—|0). The
intensity of the Stokes line is larger than that of the anti-
Stokes, since the initial population of the ground stateis
larger than that of the first excited stdfe. As the tempera-
ture increases, the relative strength of the anti-Stokes line

pyncreases since the initial population of excited states such as

1) and|2) increase. At higher temperature, the processes
|1)—|2),]2)—|3), etc. (2)—|1), |3)—|2), etc) may con-

finitesimally small positive quantity. Note here that the con-tribute to the formation of the Stokéanti-Stoke line. The

; +
vergence factore'’n®

plays an important role since general features of the LL and SL models are similar, par-

h,~1/n| at largen. We rewrite the above expression to tially because the system-bath interactions are weak and the

improve the convergence of the summation omefor nu-
merical estimations:

bath plays a minor role. The temperature dependences of the
signal of the two models are, however, rather different. The
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(A) The SL model (B) The LL model damping constant than the LL model. This is agfin eiplained
12 25 by the limit expressior{22) if we remember thaty.s= 7.,
10 20 or 7. /B.

5 8 715 In conclusion, we successfully demonstrated that the
= 6 =10 square-linear coupling mechanism can be an interesting ex-
4 5 tension of the Brownian oscillator model for the description
i 0 of a dissipative system. As clear from the numerical results,
2151050051152 2.15-1-050 05 1 15 2 the two models, the SL model and LL model, may be distin-

@ o guishable through the Raman spectroscopy or other

_ - (q(t)q(0)) experiments such as ISS and OKE.
FIG. 2. The dependence of Raman line shape for the dampinecently, the higher-order optical processes related to
factorsys., my. for (A) the SL model andB) the LL model. Here,  (q(t,)q(t,_1)---q(0)) (n>1) have been a subject of great
B=0.5. The solid line from the highest to lowest one aroard0  interest[7,8,6]. If the system is Brownian, which produces
corresponds téa) 7=0.5, (b) 7=0.3, and(c) 7=0.1, respectively. Gaussian noise, all characteristics can be determined by the
two-time correlation functiongq(t)q(0)), whereas, if the

) ) ) ) system deviates from Brownian, such higher-order optical
difference can be summarized by two poirit$.The signals  processes can provide additional information. For example,

of the two models forps =7, (=0.3) are similar around Loring and Mukamel had developed the seventh-order Ra-
B=1 and become different g8 deviates from onegii) At man gcho theor{/7] anglogous to the photon echo theory by
very high temperature, the twéStokes and anti-Stokes applying the stochastic two-level model to the ground and

peaks merge to form a single central peak in the SL moddie first excited vibrational states to study the inhomoge-
while they remain separated in the LL model. neous distribution of vibrational frequencies. Since their

The reason fofi) is explained by Eq(22) since the sig- theory is based on the stochastic two-level model, which is a

nals for the two models coincide with each other if we in- speqal case of the spin-boson mog@], one cannot apply
— their theory to the low frequency modes of liquids where the

voke Eq.(22) and se3=1. _ Brownian model has been successfully used. For instance,

The reason folii) is also explained by Eq22). Atthe  \ye cannot obtain such an echolike signal from the seventh-
highest temperatur8=0.2, the limit expressiof22) is well  order Raman processes in the Brownian theory, since the
fit by the numerically calculated signals and the spectra foyibrational frequencies are not fluctuating in this model. If
the LL and SL models can be expressed by the same exprege employ the square-linear coupling, however, the funda-
sion with 77e4= 7. and 7= 75,/ B, respectively. This im- mental frequency of the main harmonic system will fluctuate
plies that the SL model at high temperatures behaves like and we can expect to have such an echo signal. Thus, by
strongly damped LL model. Since E(22) peaks at around generalizing the Brownian system to the square-linear cou-
w=0 for large 7¢, a single peak is observed in the SL pling, one can expect to establish a bridge betvyeen the
model as mentioned ifii ). Brownian motion thepry and the stochast[c or the spln—bqson

Figure 2 illustrates the signals for various couplingtheC’W- We_ leave this problem of the higher-order optical
strengthszys, and 7, at the temperatur@=0.5. The two P ocessesin the SL model for a future study.
(Stokes and anti-Stokppeaks are broadened and shifted to  One of the author¢K.0.) thanks Dr. Keisuke Tominaga
=0 for both models as the damping factors increase, whicland Dr. Yoko Suzuki for informative discussions, and ac-
is in accord with the general experimental facts. The SlLknowledges Professor Rob Coalson for a critical reading of
model, however, is more sensitive to the change of thehe manuscript.
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