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Two-time correlation functions of a harmonic system nonbilinearly coupled to a heat bath:
Spontaneous Raman spectroscopy

K. Okumura and Y. Tanimura
Division of Theoretical Studies, Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444, Japan

~Received 11 March 1997!

A harmonic system coupled to a heat bath comprised of harmonic oscillators through a nonbilinear system-
bath interactionq2qj is considered, whereq and qj are the system and bath coordinates, respectively. The
two-time correlation functions for the model are analytically obtained through a diagrammatic expansion.
Numerical calculations of the analytical results are presented for the spontaneous~frequency-domain! Raman
spectroscopy. Comparison with numerical results from the conventional linear-coupling model~the Brownian
oscillator model! are made, which indicates experimentally distinguishable temperature dependences.
@S1063-651X~97!08609-1#

PACS number~s!: 05.70.2a, 31.15.2p, 33.20.Fb
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In the Brownian oscillator model@1–3#, the harmonic os-
cillator system is coupled to the heat bath consisting of
infinite number of harmonic oscillators. The coupling b
tween the main system and the bath is assumed to be b
ear, i.e.,qqj . The Gaussian property is guaranteed for a b
consisting of harmonic oscillators bilinearly coupled to t
main system. Although a number of experiments have b
well explained by the Brownian model, one needs to mod
the model to have a better description of realistic syste
Generalization to, for example, an anharmonic bath or n
bilinear coupling breaks the Gaussian nature of the no
produced by the Brownian bath.

As such an example, we consider in this article a sys
with square-linear coupling~the SL model! denoted byq2qj

in terms of the two-time correlation function. Although th
conventional linear-linear coupling~the LL model! causes
dissipation in the system dynamics, it does not modulate
fundamental frequencyv0 of the main harmonic system. I
we assume the square-linear interaction, however,v0 will
fluctuate asv01V(t), whereV(t) is the noise produced b
the bath. By use of the terminology of the reduced den
matrix, the difference of the two models is that in the S
model the pure dephasing is the mechanism of dissipat
which is not included in the LL model.

The deviation from the Brownian system can be direc
detected by optical measurements such as impulsive st
lated scattering~ISS!, optical Kerr effect~OKE!, and infrared
absorption~IR!, which are related to the antisymmetric tim
correlation function̂ @q(t),q(0)#& @3#. In this article, we cal-
culate the correlation functions for the LL and the SL mod
and then show how one can use the off-resonant Ra
spectroscopy to distinguish the two models.

Besides the above-mentioned interests, the SL mode
important in that it connects the stochastic model to
Brownian ~or the LL! model. The stochastic model is bas
on the assumption that the environment causes a ran
modulation of the vibrational frequency, whereas the Brow
ian model is based on the assumption that the environm
causes the friction of motion by way of the random for
@see the fluctuation dissipation relation in Eq.~5! below#,
which is described by the Langevin equation. In the
561063-651X/97/56~3!/2747~4!/$10.00
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model, the frequency of the mode of the system itself
modulated by the environment as in the stochastic mo
while its classical dynamics can be described by
Langevin-type equation as in the LL model. Thus the
model makes it possible to bridge the gap between the
chastic model and the dynamical models~such as LL model!
which are based on the Langevin-type equation derived fr
the Hamiltonian.

As the main tool, we use the Feynman rule on the unifi
time path~UTP! @4–6#. To derive the real-time correlation
function at a finite temperature, there are two well-know
techniques: the Matsubara and Keldysh formalisms. T
former requires subtle analytical continuation, which is on
applicable to the correlation function of two-time variable
while the latter makes it hard to include the initial correl
tion. The advantage of the UTP formalism is that a mu
~real-!time real-time correlation function such a
^q(t)q(t8)•••q(t9)& can be obtained,without performing
the delicate analytical continuation butwith the initial corre-
lation automatically taken into account.

Consider models described by the Hamiltonian

H5
p2

2m0
1

m0v0
2

2
q21(

j 51

N H pj
2

2mj
1

mjv j
2

2 Fqj2
F j~q!

mjv j
2G 2J ,

~1!

where p,q are the momentum and coordinate of the ma
system andpj ,qj are those of thej th degree of freedom o
the bath oscillators. In the linear-linear coupling model~the
LL model!, F j (q) is chosen to beF j (q)5cj q. In this study,
we introduce the square-linear model~the SL model! in
which F j (q)5gj q2/2. Note here that, in the LL model, th
Hamiltonian has the coupling termqqj , while, in the SL
model, it has the coupling termq2qj . In addition, the SL
model has the anharmonic contributionlq4/4! to the poten-
tial, while the LL model has the frequency shifting term~the
counter term! Dq2/2 @2,1#, where l5( j (3gj

2/mjv j
2),

D5( j (cj
2/ mjv j

2). To elucidate the physical picture assoc
ated with these models, we present the Euler-Lagrange e
2747 © 1997 The American Physical Society
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2748 56K. OKUMURA AND Y. TANIMURA
tion derived from the Hamiltonian~1!. We found that, for
anyF j (q), the equation of motion reduces to the generaliz
Langevin equation:

m0

d2q

dt2
1

dV

dq
1m0E

0

t

dt8g~ t2t8!
dq

dt8
5R~ t !, ~2!

where the damping kernel is given by

g~ t2t8!5(
j 51

N
]F j„q~ t !…

]q~ t !

cosv j~ t2t8!

m0mjv j
2

]F j„q~ t8!…

]q~ t8!
. ~3!

It should be noticed that the termDq2/2 in the LL model and
the termlq4/4! in the SL model have been eliminated fro
the equation of motion after tracing over the bath degree
freedom: the potential in the above equation is given
V(q)5m0v0

2q2/2. R(t) is the fluctuating force which satis
fies the relations

^R~ t !& I50, ~4!

^R~ t !R~ t8!& I5g~ t2t8!m0 /b, ~5!

where the expectation is the classical phase-space ave
with the initial distributione2bH at the inverse temperatur
b51/kBT. In the SL model the damping kernel is a functio
of the coordinate:g(t2t8)5q(t)hSL(t2t8)q(t8), while in
the LL model it does not depend on q:
g(t2t8)5hLL(t2t8). In the following, we study a quantum
dynamics of the system in the case ofhLL(t)5hLLd(t) or
hSL(t)5hSLd(t).

In the Feynman rule on UTP@5,6#, we use four indepen
dent propagators,

D ~21 !~ t,t8!52u~ t2t8!^q~0!q~ t !2q~ t !q~0!&0 ,

D ~22 !~ t,t8!5
1

2
^q~0!q~ t !1q~ t !q~0!&0 ,

D ~23!~ t,t!5^q~0!q~ t1 i t!&0 ,

D ~33!~t,t8!5u~t2t8!^q~ i t8!q~ i t!&0

1u~t82t!^q~ i t!q~ i t8!&0 ,

where the expectation value is defined by the noninterac
HamiltonianH0 as

^q~0!q~ t !&05Tre2bH0qeiH 0t/\qe2 iH 0t/\/Tre2bH0. ~6!

The correlation functions for the interacting syste
Dc

( lm) , are given by replacing the noninteracting Hamiltoni
by the full Hamiltonian in the definitions of the bare corr
lation functions, D ( lm). For example, Dc

(23)(t,t)
5^q(0)q(t1 i t)&, where the expectation value is defined
Eq. ~6! with H0 replaced byH.

We found that, in the Fourier-Laplace representation,
the full correlation functions can be expressed throug
single functionf (x) of a complex variablex:

Dc
~21 !~z!5

\

i
f ~z!, ~7!
d

of
y

ge

g

,

ll
a

Dc
~22 !~z!52

1

b (
n52`

`
z

nn

1

z2nn
@ f ~z!2 f ~nn!#, ~8!

Dc
~23!~z,n!52\

1

z2nn
@ f ~z!2 f ~nn!#, ~9!

Dc
~33!~n!5\ f ~nn!, ~10!

wherenn52pn/(b\). To obtain the functionf (x), we de-
rive Dc

(21)(z) through perturbative calculations. The di
grammatic expansion ofDc

(21)(z) is then calculated by us
ing the Feynman rule as@5#

Dc
~21 !~z!5

1

@D ~21 !~z!#212S~z!
, ~11!

where

D ~21 !~z!5
\

i

1

m0

1

v0
21z2

. ~12!

In the LL model, the self-energyS(z) is exactly given by
S(z)52hLLz @5#. In the SL model the self-energyS(z) is
calculated up to the second order ingj as

S~z!5Sa1(
j 51

N S S j1E
0

`

dt e2zt@Sd
j ~ t !1Se

j ~ t !# D ,

~13!

where the sumS j[Sb
j (t)1Sc

j (t) is time independent
though each elementSb

j (t) or Sc
j (t) depends on time. Each

term can be described by a diagram and analytical exp
sions for such diagrams are given by

Sa52
i

2\
lD ~22 !~0,0!,

Sb
j ~ t !5

i

2\2
gj

2D ~33!~0,0!E
0

b\

dtD j
~23!~ t,t!,

Sc
j ~ t !5

21

2\2
gj

2D ~22 !~0,0!E
0

t

dt8D j
~21 !~ t,t8!,

Sd
j ~ t !52

1

\2
gj

2D j
~21 !~ t,0!D ~22 !~ t,0!,

Se
j ~ t !52

1

\2
gj

2D ~21 !~ t,0!D j
~22 !~ t,0!.

Introducing the spectral density defined by

J~v!5(
j 51

N pgj
2

2mjv j
d~v2v j !, ~14!

the summation overj in Eq. ~13! is replaced by the integral
If we assumeJ(v)5m0hSLv, which is equivalent to setting
hSL(t)5m0hSLd(t), this integration is divergent. To regula
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56 2749TWO-TIME CORRELATION FUNCTIONS OF A . . .
ize the divergent integral, we introduce a convergent fac
ei«v, where« is a positive small number and shall be set
zero at the end. To eliminate the divergence we replace
frequencyv0

2 in the Hamiltonian Eq.~1! by v0
21Dv0

2 where
Dv0

25(2\hSL /p)ln(12e2n1«). After this renormalization,
we have

S̃R~z!5 i
\hSL

2m0v0
2 @S1~z!1SR~z!#, ~15!

where

S1~z!5
iz

v0
coth

b\v0

2
1

iz2v0

2v0
coth

iz2v0

2
b\

2
iz1v0

2v0
coth

iz1v0

2
b\, ~16!

and

SR~z!5
4i

b\ (
n51

` nn
2~3z22v0

2!2~v0
21z2!2

nn$~v01 iz!21nn
2%$~v02 iz!21nn

2%
.

~17!

From Eqs.~7! and ~11! we finally obtain

f ~x!5
1

m0v0
2

1

~v0
21x2!/v0

22S̃R~x!
, ~18!

where S̃R(x) is defined through Eqs.~15!–~17!. Combined
with Eqs. ~7!–~10!, we now have analytical expressions f
all theDc

( lm) within the present approximation since the fun
tion f (x) is given by Eq.~18!. In the case of the LL model

f (x) is expressed in Eq.~18! by replacing S̃R(x) by
2hLLx/v0

2.
Within the linear approximation of the polarizabilit

(a5a01a1q), the~off-resonant! spontaneous Raman sign
is given by@3#

I ~v!52a1
2ReE

0

`

dt^q~0!q~ t !&eivt, ~19!

wherev is the Raman shift. We thus have

I ~v!5ReF 1

b\ (
n52`

`

einn01
hnG , ~20!

where hn5Dc
(23)( iv,n). Here Dc

(23)( iv,n) is defined by
Eq. ~9! in which f (x) is now given by Eq.~18! for the SL
model. The results for the LL model can also be obtained

replacingS̃R(x) in Eq. ~18! by 2hLLx. Here, 01 is an in-
finitesimally small positive quantity. Note here that the co
vergence factoreinn01

plays an important role sinc
hn;1/unu at large n. We rewrite the above expression
improve the convergence of the summation overn for nu-
merical estimations:
r

he

y

-

I ~v!5ReF i

2
\ f ~ iv!1

1

b\
h01

1

b\ (
n52`

`

8 S hn2
\ f ~ iv!

nn
D G ,

~21!

where(8 implies that the summation does not includen50.
In the following, numerical calculations are carried out usi
Eq. ~21! for both models.

In the high temperature limitb→0, Eq. ~21! reduces to

Ĩ ~v!→
1

b̃

h̃eff

~ṽ 0
22ṽ 2!21~ṽh̃eff!

2
, ~22!

whereh̃eff5h̃LL (5h̃SL /b̃) in the LL ~SL! model. Here we
have used the dimensionless parameters defined
Ĩ (v)5m0v0

2I (v)/\,h̃LL5hLL/v0 ,h̃SL5\hSL /(m0v0
2), b̃

5b\v0 ,ṽ5v/v0 ,ṽ05v0 /v051.
Figure 1 compares the Raman spectra for various t

peratures in the cases of~A! the SL model and~B! the LL
model. We chose the system-bath couplingh̃LL ,h̃SL50.3,
which satisfies the perturbative conditionh̃LL ,h̃SL!1. At
low temperature the Stokes (ṽ;21) and anti-Stokes
(ṽ;1) lines are observed in both models. Since we assum
the linear polarization,a5a01a1q, the scattered light
originated from the transition between thej th and thej 61th
vibrational states. At low temperatures, the Stokes l
mainly corresponds to the transition from the ground vib
tional stateu0& to the first excited stateu1& while the anti-
Stokes corresponds to the opposite processu1&→u0&. The
intensity of the Stokes line is larger than that of the an
Stokes, since the initial population of the ground stateu0& is
larger than that of the first excited stateu1&. As the tempera-
ture increases, the relative strength of the anti-Stokes
increases since the initial population of excited states suc
u1& and u2& increase. At higher temperature, the proces
u1&→u2&, u2&→u3&, etc. (u2&→u1&, u3&→u2&, etc.! may con-
tribute to the formation of the Stokes~anti-Stokes! line. The
general features of the LL and SL models are similar, p
tially because the system-bath interactions are weak and
bath plays a minor role. The temperature dependences o
signal of the two models are, however, rather different. T

FIG. 1. The temperature dependence of Raman line shape

~A! the SL model with h̃SL50.3 and ~B! the LL model with

h̃LL50.3. The intensityI (v) in the figure and the other variable
are dimensionless as defined below Eq.~22!. The solid line from the

lowest to the highest one aroundṽ50 corresponds to the invers

temperatures~a! b̃53.0, ~b! b̃51.0, ~c! b̃50.5, and~d! b̃50.2,
respectively. If we setv05210 cm21, the temperatures are~a! 100
K, ~b! 300 K, ~c! 600 K, ~d! 1500 K.
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2750 56K. OKUMURA AND Y. TANIMURA
difference can be summarized by two points.~i! The signals
of the two models forh̃SL5h̃LL ~50.3! are similar around
b̃51 and become different asb̃ deviates from one.~ii ! At
very high temperature, the two~Stokes and anti-Stokes!
peaks merge to form a single central peak in the SL mo
while they remain separated in the LL model.

The reason for~i! is explained by Eq.~22! since the sig-
nals for the two models coincide with each other if we
voke Eq.~22! and setb̃51.

The reason for~ii ! is also explained by Eq.~22!. At the
highest temperatureb̃50.2, the limit expression~22! is well
fit by the numerically calculated signals and the spectra
the LL and SL models can be expressed by the same exp
sion with h̃eff5h̃LL andh̃eff5h̃SL /b̃ , respectively. This im-
plies that the SL model at high temperatures behaves lik
strongly damped LL model. Since Eq.~22! peaks at around
v50 for large h̃eff , a single peak is observed in the S
model as mentioned in~ii !.

Figure 2 illustrates the signals for various coupli
strengthsh̃SL and h̃LL at the temperatureb̃50.5. The two
~Stokes and anti-Stokes! peaks are broadened and shifted
v50 for both models as the damping factors increase, wh
is in accord with the general experimental facts. The
model, however, is more sensitive to the change of

FIG. 2. The dependence of Raman line shape for the dam

factorsh̃SL , h̃LL for ~A! the SL model and~B! the LL model. Here,

b̃50.5. The solid line from the highest to lowest one aroundṽ50

corresponds to~a! h̃50.5, ~b! h̃50.3, and~c! h̃50.1, respectively.
y

el

r
es-

a

h
L
e

damping constant than the LL model. This is again explain
by the limit expression~22! if we remember thath̃eff5h̃LL

or h̃SL /b̃ .
In conclusion, we successfully demonstrated that

square-linear coupling mechanism can be an interesting
tension of the Brownian oscillator model for the descripti
of a dissipative system. As clear from the numerical resu
the two models, the SL model and LL model, may be dist
guishable through the Raman spectroscopy or ot
^q(t)q(0)& experiments such as ISS and OK
Recently, the higher-order optical processes related
^q(tn)q(tn21)•••q(0)& (n.1) have been a subject of gre
interest@7,8,6#. If the system is Brownian, which produce
Gaussian noise, all characteristics can be determined by
two-time correlation functionŝq(t)q(0)&, whereas, if the
system deviates from Brownian, such higher-order opti
processes can provide additional information. For exam
Loring and Mukamel had developed the seventh-order
man echo theory@7# analogous to the photon echo theory
applying the stochastic two-level model to the ground a
the first excited vibrational states to study the inhomo
neous distribution of vibrational frequencies. Since th
theory is based on the stochastic two-level model, which
special case of the spin-boson model@9#, one cannot apply
their theory to the low frequency modes of liquids where t
Brownian model has been successfully used. For insta
we cannot obtain such an echolike signal from the seve
order Raman processes in the Brownian theory, since
vibrational frequencies are not fluctuating in this model.
we employ the square-linear coupling, however, the fun
mental frequency of the main harmonic system will fluctua
and we can expect to have such an echo signal. Thus
generalizing the Brownian system to the square-linear c
pling, one can expect to establish a bridge between
Brownian motion theory and the stochastic or the spin-bo
theory. We leave this problem of the higher-order optic
processes in the SL model for a future study.

One of the authors~K.O.! thanks Dr. Keisuke Tominaga
and Dr. Yoko Suzuki for informative discussions, and a
knowledges Professor Rob Coalson for a critical reading
the manuscript.
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